首页> 外文OA文献 >Situation awareness in context-aware case-based decision support.
【2h】

Situation awareness in context-aware case-based decision support.

机译:基于情境感知的基于案例的决策支持中的态势感知。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Humans naturally reuse recalled knowledge tosolve problems and this includes understanding the informationthat identify or characterize these problems (context), andthe situation. Context-aware case-based reasoning (CBR)applications uses the context of users to provide solutionsto problems. The combination of a context-aware CBR withgeneral domain knowledge has been shown to improve similarityassessment, solving domain specific problems and problems ofuncertain knowledge. Whilst these CBR approaches in contextawareness address problems of incomplete data and domainspecific problems, future problems that are situation-dependentcannot be anticipated due to lack of the facility to predict thestate of the environment. This paper builds on prior work topresent an approach that combines situation awareness, contextawareness, case-based reasoning, and general domain knowledgein a decision support system. In combining these concepts thearchitecture of this system provides the capability to handleuncertain knowledge and predict the state of the environment inorder to solve specific domain problems. The paper evaluates theconcepts through a trial implementation in the flow assurancecontrol domain to predict the formation of hydrate in sub-seaoil and gas pipelines. The results show a clear improvement inboth similarity assessment and problem solving prediction.
机译:人类自然会重用被召回的知识来解决问题,这包括了解可以识别或表征这些问题(上下文)和情况的信息。基于上下文的案例推理(CBR)应用程序使用用户的上下文来提供问题的解决方案。已经证明将上下文感知的CBR与一般领域知识相结合可以改善相似性评估,解决领域特定问题和知识不确定的问题。尽管这些CBR方法在上下文感知中解决了数据不完整的问题和特定领域的问题,但是由于缺乏预测环境状态的功能,因此无法预见与情况有关的未来问题。本文以先前的工作为基础,提出了一种在决策支持系统中结合了情境意识,情境意识,基于案例的推理和一般领域知识的方法。通过结合这些概念,该系统的体系结构提供了处理不确定知识和预测环境状态的能力,以解决特定的领域问题。本文通过在流量保证控制领域的试验实施对概念进行了评估,以预测海底油气管道中水合物的形成。结果表明,在相似性评估和问题解决预测方面,都有明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号